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ABSTRACT
In this paper we describe the BBN Byblos 10x real time system
used for the 1998 Hub-4 English tests.  Given our state of the art
primary system [1] running at 230 times real time (230 xRT) we
show that eliminating and approximating many computationally
expensive components speeds up the system by a factor of 23
with a relative loss in WER of 18%.  This is accomplished
without retraining or changing the primary system structure.  The
components of the primary system that are refined include
segmentation, adaptation, decoding, cross-word rescoring with
adaptation, and system combination.  The time saving algorithms
used include fast Gaussian computation, grammar spreading,
nbest tree rescoring, and block diagonal adaptation.

1. INTRODUCTION

Large vocabulary continuous speech recognition requires a
considerable amount of computation.  The amount of
computation depends to a large degree on the quality of speech,
with the computation increasing by a significant factor for more
natural speech.  Research systems frequently use 200 to 500 times
real time to achieve the highest possible accuracy.  While we can
always decrease the computation by using an aggressive beam
search pruning strategy [2], our goal here is to decode the speech
with the least amount of computation while still obtaining
accuracy close to that of our best research system.

In 1997 the sponsor introduced a 10 times real time contrast
evaluation to show the tradeoffs between speed and accuracy on
the 1997 Hub-4 English test data.  We spent little time preparing
for this test due to time constraints, and ultimately submitted a
system that simply used smaller models, fewer parameters, and
tighter pruning than our primary system.  Our findings for this
evaluation were based on the high quality (f0 & f1) data and
showed a factor of 20 gain in speed and a relative loss in accuracy
of 35%.

This year, for the 1998 Hub-4 English test, we were once again
evaluated on a 10 times real time spoke.  We spent more time to
work on techniques that would reduce computation but have a
minimal effect on accuracy for all speaker conditions (not just f0
& f1).  We show that the 10x real time system is structurally the
same as our primary system using the same models, number of
parameters, and grammar.  The majority of the speedup is from
algorithms that reduce computation.

We describe these algorithms in section 2.  They include fast
Gaussian computation (FGC), grammar spreading, nbest tree

rescoring and block diagonal transformations for adaptation.  In
section 3 we compare the primary and 10x systems, then we
report results in section 4. For all findings in this paper assume
that the results are based on the 1997 Hub-4 Evaluation data set
unless otherwise noted.

2. SPEED-UP ALGORITHMS

Here we present several computation reducing algorithms used in
the BBN Byblos 1998 Hub-4 10x real time system.

2.1 Fast Gaussian Computation

Generally we try to avoid speeding up one part of the
computation since it doesn’t result in a large factor.  However,
our primary system uses a very large number of Gaussian
probability densities to obtain high accuracy.  Thus, the
computation is dominated by Gaussian evaluations in several
areas of the recognition process.  In the primary system, when
using a narrow beam, Gaussian distance computation makes up
80% of the segmentation decoding, 76% of the forward pass
decoding, 94% of the backward pass and 73% of the adapted
crossword rescoring, so it is worth spending some effort to
decrease this one type of computation.

We use a simpler variation of Padmanabhan’s decision tree based
FGC [3] to reduce the Gaussian distance computation.  We start
with the means of all the Gaussians in the system and build a
decision tree using binary clustering [4].  Each leaf of this tree
represents a unique region of the feature space.  At each leaf we
store a short list of the Gaussians from each codebook that are
worth considering.  The short lists are made by traversing the tree
with labeled training data in a manner similar to that used in [3].
The algorithm determines the likely Gaussians for a codebook to
be any Gaussian that was ever used within that leaf.  If any
codebook within a leaf has no samples in the training data, we
find the Gaussian that is closest to the mean of the leaf as the sole
Gaussian for this codebook.

During decoding, for each feature vector we traverse the decision
tree as we do when filling the tree.  This requires only an average
of 2 * depth distance calculations.  Then, when we need to find
the most likely Gaussians for a codebook associated with a state,
we only consider the Gaussians in the short list.  In the forward
pass, we use phonetically-tied mixtures (PTM) with 256
Gaussians per codebook.  Using FGC we reduce the average
number to 37 Gaussians per codebook.  In the backward pass, we
use state-clustered tied-mixtures (SCTM), and we reduce the
average number from 64 to 23 Gaussians.  We show in Table 1
the effect of FGC on the fw and bw pass using a narrow beam.



We see that the fw pass is sped up by a factor of 3 and the bw
pass by a factor of 2.5 with almost no loss in accuracy.

Model FGC xRT WER # of computed
Gaussians / Cbk

Fw-PTM No 2.3 20.7 256

Fw-PTM Yes 0.7 20.9 37

Bw-SCTM No 1.0 20.8 64

Bw-SCTM Yes 0.4 20.9 23

Table 1. FGC vs. No FGC using a narrow beam.

2.2 Grammar Spreading

During a beam search we generally keep any theory active if its
score is within some factor of the largest path score at that frame.
The beam search is clearly not admissible, because a theory that
currently scores poorly might later have a better score.  The basic
algorithm works well if the different theories each get their scores
gradually in a time-synchronous manner or the beam is so large
that potentially good theories aren’t pruned out.  In the primary
system we set the beam wide enough so that we don’t remove the
best scoring global path prematurely.  For the 10x system, a wide
beam is too costly, so we must assure that theory scores are
adjusted gradually.

A major cause of irregular score changes lies with the language
model costs coming not at every frame, but rather at word
transitions.  These language model transitions, which can often be
below 10-6 for the correct word, occur at different times for each
theory.  Furthermore, we often exponentiate the language model
probabilities by two or more in order to balance them against the
acoustic probabilities.  Thus, a theory can have its path score
decrease in one frame by 10-12, which is comparable to the width
of the beam that we use in the search.

By spreading the grammar probabilities across the internal phone
transitions of a word we effectively remove these large score
spikes.  This allows us to narrow the beam and speed up the
search.  Figure 1 shows a comparison of how language model
costs are applied in the beam search.  Previously (Old) the entire
grammar cost was applied at the word transition.  Now (New) the
grammar cost at a word transition is reduced by the subsequent
word's unigram cost.  This removed cost is then applied gradually
across the subsequent word's phone transitions.

Figure 1. Spreading grammar costs across phones.

We tried trigram and bigram weighted averages for the grammar
to spread, but surprisingly found that spreading the unigram
probability worked best.
In Table 2 we see the effect of grammar spreading on the bw
pass.  It is evident that we can either reduce computation by a
factor of 2 with no loss, or reduce the computation significantly
for a small penalty.

Spread
Grammar

Beam
width

xRT WER

No Wide 5.2 26.3

No Medium 1.8 29.7

Yes Medium 2.0 27.4

Yes Narrower 1.1 28.6

Table 2. Effect of spreading grammar in backward pass.

2.3 Nbest Tree  Rescoring

In the primary system during the nbest rescoring pass we decode
with crossword models each of the 100 or more nbest hypotheses
separately.  Typically there are only one or two words that differ
in successive nbest hypotheses.  For the 10x system we create a
tree of these hypotheses for each reference utterance and score
overlapping paths only once.  This eliminates the redundancy of
scoring identical partial paths of similar hypotheses.  The
algorithm also allows us to prune more effectively as we are
scoring all theory paths in parallel.  As described in the grammar
spreading section, we prune based on a factor of the largest path
score, so the beam width has a much larger impact on a tree of
multiple hypotheses.  We lose no accuracy using the nbest tree
rescorer, and cut the rescoring computation by a factor of 2.

2.4 Adaptation

In the primary system we adapt the crossword DSAT [5,6]
models using 2 iterations of MLLR with full matrix
transformations from the results of a previous DSAT non-
crossword decode.  For the 10x system we use 1 iteration of
MLLR using 8 block diagonal transformations using the results
of the speaker independent (SI) crossword rescore.  The effects
of this reduced adaptation can be seen in Table 5.

Furthermore, in the primary system adapted crossword rescoring
is done one speaker at a time.  We use a speaker dependent (SD)
acoustic model that is produced by applying the estimated
transformation on the SI model prior to rescoring.  This
procedure is highly inefficient when there are many speakers in
the test set, since a lot of time is spent in I/O and parameter
initialization.  In the 10x system we avoid this inefficiency by
incorporating the adaptation into the rescorer.  We rescore
multiple speakers in one step, performing all the necessary I/O
and initialization only once.  The effect of adapted multiple
speaker rescoring is shown in Table 3, where we see a 68%
relative improvement in speed over the primary system with a
minimal loss in accuracy.
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xRT WER

Normal Adaptation 2.82 20.9

Fast Adaptation 0.88 21.1

Table 3. Effect of fast adaptation in rescoring

3. PRIMARY vs. 10x SYSTEMS

Here we compare the two systems in each recognition step.

For the 10x system, the input speech is automatically segmented
as in the Primary System using a dual-band phoneme recognizer
for separating channels, and a dual-gender word recognizer that
locates pauses and gender changes.  We speed up the word
recognizer in the 10xRT system by using a combination of FGC
and grammar spreading.  We then cluster segments by speaker as
in the Primary System to adapt the more detailed crossword
DSAT models later prior to crossword rescoring.  Adaptation of
the non-cross-word DSAT models is eliminated.

We decode the input twice.  Once with the 2-Pass N-best decoder
[7] using speaker independent models as in the Primary System.
And once with the adapted crossword models using the nbest tree
rescorer.  For the 10xRT system we eliminate non-cross-word
adaptation.  We also reduce the crossword adaptation to 1
iteration of MLLR using 8 block diagonal transformations
compared to 2 iterations with full matrix transformations in the
Primary System.

In both decoding and rescoring we use a combination of FGC,
grammar spreading and pruning to reduce computation.

4. RESULTS

The recognition steps of the primary system include analysis,
VTL stretch estimation, segmentation, 2-pass decode, SI cross
word rescore, DSAT non cross word decode, DSAT cross word
rescore and system combination.  As shown in Table 3, the 10x
system uses the same analysis and VTL stretch estimation, while
eliminating the DSAT non-crossword decode and system
combination.   All other steps of the process use one or more of
the algorithms described above to reduce computation and speed
up the system.

We show in Table 4 the speed/accuracy tradeoff on the Hub-4
1997 evaluation data set.  These results are comparable to the
Hub-4 1998 evaluation results.  We see that the primary system
is sped up by a factor of 23 (10xRT) with a relative loss in WER
of 18%.  Using FGC, grammar spreading and pruning in both
segmentation and decoding provides a factor of 4 savings in
speed (40xRT -> 9xRT).  The rest of the savings come from
eliminating system combination and non-cross-word adaptive
decoding along with approximating the adaptation of the
crossword models.

Primary xRT 10x  xRT WER

14.8

Analysis 0.1 0.1 0.0

VTL Stretch Estim. 1.5 1.5 0.0

Segmentation 7.9 0.8 +0.5

2-Pass Decode 15.4 4.7 +0.7

SI xword nbest rescor 5.9 0.9 0.0

DSAT nonx decode 22.0 0.0 +0.9

DSAT xword rescore 14.8 1.9 +0.2

System Combination 163.6 0.0 +0.4

Total 231.2 9.9 17.5

Table 4. Speed/Accuracy for Primary vs. 10xRT systems
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